首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   229篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   7篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   8篇
  2016年   2篇
  2015年   10篇
  2014年   12篇
  2013年   35篇
  2012年   16篇
  2011年   16篇
  2010年   10篇
  2009年   3篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   12篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   11篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   6篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1970年   1篇
排序方式: 共有246条查询结果,搜索用时 218 毫秒
81.
The bacterial cell surface plays a major role in the bacterial aggregation that in turn plays a positive role in affecting the bacterial dispersion and survival in soil and their ability to adhere to plant surfaces. Plant growth–promoting Methylobacterium strains, Methylobacterium goesingense CBMB5, Methylobacterium sp. CBMB12, Methylobacterium oryzae CBMB20, Methylobacterium fujisawaense CBMB37, M. oryzae CBMB110 and Methylobacterium suomiense CBMB120 were evaluated for aggregation efficiency. Aggregation occurred in all test strains under high C/N growth conditions, and the strain CBMB12 showed the highest aggregation of 53.4 % at 72 h. Disaggregation compound treatment studies revealed the role of protein–protein interaction in Methylobacterium strains except CBMB110 and CBMB120 strains, where a possible carbohydrate–protein interaction is suspected. Surface layer protein extraction by LiCl followed by SDS-PAGE analysis showed the presence of proteins at molecular weights ranging from 41 to 49 kDa. Methylobacterium strains under aggregated conditions showed increased hydrophobicity compared to the cells under standard grown conditions. A relatively higher hydrophobicity of 50.1 % as evident by the adhesion with xylene was observed with strain CBMB12 under aggregated condition. This study reports the aggregation ability in plant growth–promoting Methylobacterium strains and the possible involvement of cellular components and hydrophobicity in this phenomenon.  相似文献   
82.
Abstract

Understanding the dual inhibition mechanism of food derivative peptides targeting the enzymes (Renin and Angiotensin Converting enzyme) in the Renin Angiotensin System. Two peptides RALP and WYT were reported to possess antihypertensive activity targeting both renin and ACE, and we have used molecular docking and molecular dynamics simulation, in order to understand the underlying mechanism. The selected peptides (RALP and WYT) from the series of peptides reported were docked to renin and ACE and two binding modes were selected based on the binding energy, interaction pattern and clusters of docking simulation. The enzyme-peptide complexes for renin and ACE (Renin/RALP1,2; ACE/RALP1,2; Renin/WYT1,2 and ACE/WYT1,2) were subjected to molecular dynamics simulation. Our results identified that the peptides inhibiting renin, tends to move out of the binding pockets (S1’ S2’) which is critical for potent binding and occupies the less important pockets (S4 and S3). This could possibly be the reason for its low potency. Whereas, the same peptides targeting ACE, tends to be intact in the pocket because of the metal ion coordination and there is an ample room to improve on its efficacy. Our results further pave way for the biochemist, medicinal chemist to design dual peptides targeting the RAS effectively.

Communicated by Ramaswamy H. Sarma  相似文献   
83.
An efficient mass multiplication protocol was developed for Withania somnifera (L.) Dunal from nodal explants of field-grown plants on Murashige and Skoog medium (MS) supplemented with 6-benzyladenine (BA) [1.5 mg L−l], indole-3-acetic acid (IAA) [0.3 mg L−l] and with the addition of polyamine, spermidine (20 mg L−l) (shoot multiplication medium). A total of 46.4 shoots were obtained from nodal explants and they were elongated in the same medium in a culture duration of 6 weeks. The elongated shoots produced roots in MS medium fortified with putrescine (20 mg L−l) after 4 weeks, and all the rooted plants were successfully hardened and acclimatized with a survival rate of 100%. An average of 276 shoots (46 × 6) was produced when at least six nodal explants obtained from each of the 46 in vitro grown shoots were cultured by microcutting method in the same shoot multiplication medium. On an average, 12,696 plants could be produced from all the shoots (276 × 46) by microcuttings in a period of 7 months. HPLC revealed a significant increase in the quantities of withanolide A, withanolide B, withaferin A and withanone in the leaves, stems, and roots of in vitro regenerated plants compared to the field-grown parent plants. Ploidy analysis using flow cytometry revealed genetic stability of in vitro regenerated plants. This protocol will be useful for scale-up production of withanolides on commercial scale.  相似文献   
84.
During development of Dictyostelium, multiple cell types are formed and undergo a coordinated series of morphogenetic movements guided by their adhesive properties and other cellular factors. DdCAD-1 is a unique homophilic cell adhesion molecule encoded by the cadA gene. It is synthesized in the cytoplasm and transported to the plasma membrane by contractile vacuoles. In chimeras developed on soil plates, DdCAD-1-expressing cells showed greater propensity to develop into spores than did cadA-null cells. When development was performed on non-nutrient agar, wild-type cells sorted from the cadA-null cells and moved to the anterior zone. They differentiated mostly into stalk cells and eventually died, whereas the cadA-null cells survived as spores. To assess the role of DdCAD-1 in this novel behavior of wild-type and mutant cells, cadA-null cells were rescued by the ectopic expression of DdCAD-1-GFP. Morphological studies have revealed major spatiotemporal changes in the subcellular distribution of DdCAD-1 during development. Whereas DdCAD-1 became internalized in most cells in the post-aggregation stages, it was prominent in the contact regions of anterior cells. Cell sorting was also restored in cadA(-) slugs by exogenous recombinant DdCAD-1. Remarkably, DdCAD-1 remained on the surface of anterior cells, whereas it was internalized in the posterior cells. Additionally, DdCAD-1-expressing cells migrated slower than cadA(-) cells and sorted to the anterior region of chimeric slugs. These results show that DdCAD-1 influences the sorting behavior of cells in slugs by its differential distribution on the prestalk and prespore cells.  相似文献   
85.
Monkeypox virus (MPXV) is an orthopoxvirus closely related to variola virus, the causative agent of smallpox. Human MPXV infection results in a disease that is similar to smallpox and can also be fatal. Two clades of MPXV have been identified, with viruses of the central African clade displaying more pathogenic properties than those within the west African clade. The monkeypox inhibitor of complement enzymes (MOPICE), which is not expressed by viruses of the west African clade, has been hypothesized to be a main virulence factor responsible for increased pathogenic properties of central African strains of MPXV. To gain a better understanding of the role of MOPICE during MPXV-mediated disease, we compared the host adaptive immune response and disease severity following intrabronchial infection with MPXV-Zaire (n = 4), or a recombinant MPXV-Zaire (n = 4) lacking expression of MOPICE in rhesus macaques (RM). Data presented here demonstrate that infection of RM with MPXV leads to significant viral replication in the peripheral blood and lungs and results in the induction of a robust and sustained adaptive immune response against the virus. More importantly, we show that the loss of MOPICE expression results in enhanced viral replication in vivo, as well as a dampened adaptive immune response against MPXV. Taken together, these findings suggest that MOPICE modulates the anti-MPXV immune response and that this protein is not the sole virulence factor of the central African clade of MPXV.  相似文献   
86.
miR-181a is an intrinsic modulator of T cell sensitivity and selection   总被引:31,自引:0,他引:31  
T cell sensitivity to antigen is intrinsically regulated during maturation to ensure proper development of immunity and tolerance, but how this is accomplished remains elusive. Here we show that increasing miR-181a expression in mature T cells augments the sensitivity to peptide antigens, while inhibiting miR-181a expression in the immature T cells reduces sensitivity and impairs both positive and negative selection. Moreover, quantitative regulation of T cell sensitivity by miR-181a enables mature T cells to recognize antagonists-the inhibitory peptide antigens-as agonists. These effects are in part achieved by the downregulation of multiple phosphatases, which leads to elevated steady-state levels of phosphorylated intermediates and a reduction of the T cell receptor signaling threshold. Importantly, higher miR-181a expression correlates with greater T cell sensitivity in immature T cells, suggesting that miR-181a acts as an intrinsic antigen sensitivity "rheostat" during T cell development.  相似文献   
87.
Short interfering RNA (siRNA) duplexes are currently being evaluated as antisense agents for gene silencing. Chemical modification of siRNAs is widely expected to be required for therapeutic applications in order to improve delivery, biostability and pharmacokinetic properties. Beyond potential improvements in the efficacy of oligoribonucleotides, chemical modification may also provide insight into the mechanism of mRNA downregulation mediated by the RNA–protein effector complexes (RNA-induced silencing complex or RISC). We have studied the in vitro activity in HeLa cells of siRNA duplexes against firefly luciferase with substitutions in the guide strand of U for the apolar ribo-2,4-difluorotoluyl nucleotide (rF) [Xia, J. et al. (2006) ACS Chem. Biol., 1, 176–183] as well as of C for rF. Whereas an internal rF:A pair adjacent to the Ago2 (‘slicer’ enzyme) cleavage site did not affect silencing relative to the native siRNA duplex, the rF:G pair and other mismatches such as A:G or A:A were not tolerated. The crystal structure at atomic resolution determined for an RNA dodecamer duplex with rF opposite G manifests only minor deviations between the geometries of rF:G and the native U:G wobble pair. This is in contrast to the previously found, significant deviations between the geometries of rF:A and U:A pairs. Comparison between the structures of the RNA duplex containing rF:G and a new structure of an RNA with A:G mismatches with the structures of standard Watson–Crick pairs in canonical duplex RNA leads to the conclusion that local widening of the duplex formed by the siRNA guide strand and the targeted region of mRNA is the most likely reason for the intolerance of human Ago2 (hAgo2), the RISC endonuclease, toward internal mismatch pairs involving native or chemically modified RNA. Contrary to the influence of shape, the thermodynamic stabilities of siRNA duplexes with single rF:A, A:A, G:A or C:A (instead of U:A) or rF:G pairs (instead of C:G) show no obvious correlation with their activities. However, incorporation of three rF:A pairs into an siRNA duplex leads to loss of activity. Our structural and stability data also shed light on the role of organic fluorine as a hydrogen bond acceptor. Accordingly, UV melting (TM) data, osmotic stress measurements, X-ray crystallography at atomic resolution and the results of semi-empirical calculations are all consistent with the existence of weak hydrogen bonds between fluorine and the H-N1(G) amino group in rF:G pairs of the investigated RNA dodecamers.  相似文献   
88.
Pathogenesis-related (PR) proteins associated with degradation of structural components of pathogenic filamentous fungi were overexpressed in the two-rowed malting barley (Hordeum vulgare L.) cultivar Conlon. Transgenes were introduced by co-bombardment with two plasmids, one carrying a rice (Oryza sativa L.) chitinase gene (chi11) and another carrying a rice thaumatin-like protein gene (tlp). Each gene was under the control of the maize ubiquitin (Ubi1) promoter. Fifty-eight primary transformants from three independent transformation events were regenerated. T1 plants with high rice chi11 and tlp protein expression levels were advanced to identify T2 homozygotes by herbicide spray and subjected to further molecular analyses. T3 progeny from one event (E2) had stable integration and expression of the rice chi11 and tlp while those from the other events (E1 and E3) showed stable integration only of tlp. The successful production of these lines overexpressing the antifungal chi and tlp proteins provides materials to test the effects of these genes on a variety of fungal diseases that attack barley and to serve as potential additional sources of disease resistance.  相似文献   
89.
Mechanisms and optimization of in vivo delivery of lipophilic siRNAs   总被引:7,自引:0,他引:7  
Cholesterol-conjugated siRNAs can silence gene expression in vivo. Here we synthesize a variety of lipophilic siRNAs and use them to elucidate the requirements for siRNA delivery in vivo. We show that conjugation to bile acids and long-chain fatty acids, in addition to cholesterol, mediates siRNA uptake into cells and gene silencing in vivo. Efficient and selective uptake of these siRNA conjugates depends on interactions with lipoprotein particles, lipoprotein receptors and transmembrane proteins. High-density lipoprotein (HDL) directs siRNA delivery into liver, gut, kidney and steroidogenic organs, whereas low-density lipoprotein (LDL) targets siRNA primarily to the liver. LDL-receptor expression is essential for siRNA delivery by LDL particles, and SR-BI receptor expression is required for uptake of HDL-bound siRNAs. Cellular uptake also requires the mammalian homolog of the Caenorhabditis elegans transmembrane protein Sid1. Our results demonstrate that conjugation to lipophilic molecules enables effective siRNA uptake through a common mechanism that can be exploited to optimize therapeutic siRNA delivery.  相似文献   
90.
An assay was developed for the characterization of protein kinase inhibitors in lysates of mammalian cells based on the measurement of FRET between overexpressed red fluorescent protein (TagRFP)-fused protein kinases (PKs) and luminophore-labeled small-molecule inhibitors (ARC-Photo probes). Two types of the assay, one using TagRFP as the photoluminescence donor together with ARC-Photo probes containing a red fluorophore dye as acceptor, and the other using TagRFP as the acceptor fluorophore in combination with a terbium cryptate-based long-lifetime photoluminescence donor, were used for FRET-based measurements in lysates of the cells overexpressing TagRFP-fused PKs. The second variant of the assay enabled the performance of the measurements under time-resolved conditions that led to substantially higher values of the signal/background ratio and further improved the reliability of the assay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号